

SECTION - A

Answer ALL questions. Each carries TWO marks:

1. Give an example for a random variable and show that it satisfies the definition of a random variable.
2. Define distribution function of a random variable and write its properties.
3. Show that two random variables X and Y which are not identical can have identical distributions.
4. State the pdf of truncated binomial left truncated at ' 0 ' and obtain its mgf.
5. Find the pdf of (i) truncated exponential distribution, left truncated at ' 2 ',
(ii) truncated exponential distribution right truncated at ' 10 '.
6. Consider iid non-negative and integer valued random variables $X_{1}, X_{2}, \ldots, X_{n}$. Show that X_{1} is geometric, when $X_{(1)}=\operatorname{Min}\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a geometric random variable.
7. Obtain the pgf of a log-series distribution and hence find its mgf .
8. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \mathrm{BB}\left(\mathrm{n}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{12}\right)$. Obtain the two marginal distributions.
9. Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVP}\left(\lambda_{1}, \lambda_{2}, \lambda_{12}\right)$. Prove that X_{1} is independent of X_{2} if and only if $\lambda_{12}=0$.
10. Define compound distribution of X, when (i) θ is discrete, (ii) θ is continuous.

SECTION - B

Answer any FIVE questions. Each carries EIGHT marks:
11. Consider the distribution function of a random variable X given by

$$
\mathbf{F}(\mathbf{x})=\left\{\begin{array}{c}
0, \quad x<-1 \\
\frac{(x+2)}{4}, \quad-1 \leq x<1 \\
1, \quad 1 \leq x<\infty
\end{array}\right.
$$

Find (i) the decomposition of F, (ii) mgf of F.
12. Derive the mean, variance and mgf of truncated Poisson distribution, left truncated at ' 0 '.
13. State and prove a characterization of Bernoulli distribution through moments.
14. Consider iid Poisson random variables X_{1} and X_{2} with parameter λ. Obtain the conditional distribution of X_{1} given $X_{1}+X_{2}=n$.
15. State and prove the recurrence relation for the raw moments of a log-series distribution.
16. State and establish Skitovitch theorem regarding normal distributions.
17. Consider independent normal variables X_{1}, X_{2}, and X_{3} with $E\left(X_{1}\right)=1, E\left(X_{2}\right)=3$, $E\left(X_{3}\right)=2$ and $V\left(X_{1}\right)=2, V\left(X_{2}\right)=2$ and $V\left(X_{3}\right)=3$. Check whether or not the following pairs are independent:
(i) $X_{1}+X_{2}$ and $X_{1}-X_{2}$
(ii) $X_{1}+X_{2}-2 X_{3}$ and $X_{1}-X_{2}$
(iii) $2 X_{1}+X_{3}$ and $X_{2}-X_{3}$.
18. Derive the mgf of inverse Gaussian distribution.

Answer any TWO questions. Each carries TWENTY marks:
19(a) Consider a non-negative integer valued random variable X which satisfies lack of memory property. Find the distribution of X.
(b) Obtain the pgf, mgf and mean of power-series distribution. Hence find the pgf, mgf and mean of binomial distribution.
20(a) Derive the relationship among mean, median and mode of log-normal distribution.
(b) Let $X_{1} \sim G\left(\alpha, p_{1}\right), X_{2} \sim G\left(\alpha, p_{2}\right)$ and $X_{1} \Perp_{X_{2}}$. Find the distribution of (i) $X_{1}+X_{2}$, (ii) $\mathrm{X}_{1} /\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)$. Hence verify the independence of $\mathrm{X}_{1}+\mathrm{X}_{2}$ and $\left(\mathrm{X}_{1} /\left(\mathrm{X}_{1}+\mathrm{X}_{2}\right)\right.$). (10)

21(a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables such that $X_{r} \sim I G\left(\mu_{r}, \lambda_{r}\right)$, $\mathrm{r}=1,2, \ldots, \mathrm{n}$. Derive the distribution of $\sum_{r=1}^{n}\left(\left(\lambda_{r} \mu_{r}\right) / \mu_{r}^{2}\right)$.
(b) Let $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right) \sim \operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$. Find the two marginal distributions.

2(a) Obtain the $\operatorname{mgf} \mathrm{M}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ of $\operatorname{BVN}\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$.
(b) Define non-central t - distribution and find its pdf.
(b) Define non-cental -ditribution and is plf?

